direct product, p-group, elementary abelian, monomial
Aliases: C32, SmallGroup(9,2)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C32 |
C1 — C32 |
C1 — C32 |
Generators and relations for C32
G = < a,b | a3=b3=1, ab=ba >
Character table of C32
class | 1 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ32 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | linear of order 3 |
ρ3 | 1 | ζ3 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | linear of order 3 |
ρ4 | 1 | ζ32 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ3 | linear of order 3 |
ρ5 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ7 | 1 | ζ3 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ32 | linear of order 3 |
ρ8 | 1 | 1 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ9 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | linear of order 3 |
(1 2 3)(4 5 6)(7 8 9)
(1 9 5)(2 7 6)(3 8 4)
G:=sub<Sym(9)| (1,2,3)(4,5,6)(7,8,9), (1,9,5)(2,7,6)(3,8,4)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9), (1,9,5)(2,7,6)(3,8,4) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9)], [(1,9,5),(2,7,6),(3,8,4)]])
G:=TransitiveGroup(9,2);
C32 is a maximal subgroup of
C3⋊S3 He3 3- 1+2
C32 is a maximal quotient of He3 3- 1+2
action | f(x) | Disc(f) |
---|---|---|
9T2 | x9-15x7-4x6+54x5+12x4-38x3-9x2+6x+1 | 26·312·76·1272 |
Matrix representation of C32 ►in GL2(𝔽7) generated by
2 | 0 |
0 | 1 |
1 | 0 |
0 | 4 |
G:=sub<GL(2,GF(7))| [2,0,0,1],[1,0,0,4] >;
C32 in GAP, Magma, Sage, TeX
C_3^2
% in TeX
G:=Group("C3^2");
// GroupNames label
G:=SmallGroup(9,2);
// by ID
G=gap.SmallGroup(9,2);
# by ID
G:=PCGroup([2,-3,3]:ExponentLimit:=1);
// Polycyclic
G:=Group<a,b|a^3=b^3=1,a*b=b*a>;
// generators/relations
Export
Subgroup lattice of C32 in TeX
Character table of C32 in TeX